ATYR1923 Reduces Neutrophil Infiltration in an Acute Lipopolysaccharide (LPS) Lung Injury Model
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Fig. 7 ATYR1923 Binds Human and Mouse NRP-2
A number of aminoacyl tRNA-synthetases have evolved non-canonical functions including the tRNA synthetase for histidine, HARS. HARS
downregulates immune responses via its N-terminal domain, which we have termed the iMod (immunomodulatory) domain. The iMod domain was A) . 4 NRP-2isa Eleiot_ropilc relceptor with B)
fused to human IgG1 Fc to generate ATYR1923, which is currently in clinical evaluation for pulmonary sarcoidosis. ATYR1923 binds to neuropilin-2 gf:ﬁ;f;:tul:::tr:z:jo:z zz;nimmune Human NRP-2 Mouse NRP-2
(NRP-2), a pleiotropic co-receptor participating in several pathways including class Ill semaphorins/plexins and VEGF-C/VEGFR3. To date, little is 29 systems (Guo HEF et al., 2015) « 100; » 100-
known about the role of NRP-2 in immune regulation, although growing evidence indicates that NRP-2 influences myeloid cell biology such as « NRP-2 is a type | transmembrane protein Q EC5o ~30 nM ° ECs5o ~107 nM
activation and recruitment to inflammatory sites. For instance, NRP-2 expression on alveolar macrophages regulates airway inflammatory responses b1 that acts as a co-receptor for class Il ‘o R”0.96 ATYR1923 +&’ R%0.97
. . . . . . . . 1 +
to inhaled LPS (Immormino et al. 2018). To determine whether ATYR1923 was able to influence myeloid cell migration, ATYR1923 or a pentameric Ser;‘afhh?_”lns (SE':/r']A}:';)f”dga(;cE“éirc) . E 50 - NI15 o 50 o ATYR1923
. . . . . . . . . . . . . enaothellal grow actor -C) an ('
iMod construct, iMod-COMP, were administered intravenously to C57BL/6 mice 24h prior to LPS challenge, either by intraperitoneal (IP) injection to 0 Plexins (Royget al. 2017) E > -+ N15
induce a systemic inflammatory response or by airway administration to generate acute lung inflammation. Multi-color flow cytometry was used for « NRP-2 can be found on the cell surface or N / :\E
immunophenotyping analysis and detection of NRP-2 levels on surfaces of various immune cell populations. In vitro, mouse bone-marrow derived c in soluble form created by either 01 10 1'60 1000 10000 0 *
macrophages (BMDM), human THP-1 monocytic cells, and primary human dendritic cells (DCs) were used to confirm NRP-2 cell surface expression. a'te;”at've splicing O/r shedding (Rosignol o 10 1_00 1000 10000
Results indicated that LPS stimulation in vitro or in vivo upregulated NRP-2 on a variety of myeloid cells including macrophages (splenic & alveolar), etal. 2000; Roy et al. 2017) [Test article] (nM) [Test article] (nM)
DCs and neutrophils. Notably, prophylactic administration of ATYR1923 or iMod.COMP led to a significant and dose-dependent reduction in LPS- N;Z
induced neutrophil infiltration into the bronchoalveolar space. This finding appeared to be specific to neutrophil trafficking, since the number of Fig 7. A) Schematic representation of NRP-2 showing various domains (al, a2, bl, b2 and c). B) EC50 curves of ATYR1923 binding to human NRP-2 or mouse NRP-2 in a HEK293
. o . overexpressing system; N15 is an Fc control for ATYR1923. %ATYR1923+ cells was identified by flow cytometry based binding assay.
monocytes, alveolar macrophages, or other myeloid cells was not altered. Altogether, these results suggest that the activity of ATYR1923 includes
inhibition of neutrophil migration to inhibit lung inflammation. Fig. 8 In Vitro NRP-2 Expression
Fig 8. Histogram representation of NRP-2
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immune cells, myeloid cells, alveolar macrophages (AM), monocytes and neutrophils. * In an acute LPS lung injury model, a significant increase in immune cell infiltration and NRP-2 expression was

observed in positive control group.
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